
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS m FLUIDS, VOL. 2 1, 877-884 (1 995)

A CASE STUDY IN PARALLEL COMPUTATION:
VISCOUS FLOW AROUND AN ONERA M6 WING

ZDENBK JOHAN
Centric Engineering Systems, Inc., 3393 Octavius Drive, Suite 201, Santa Clara, CA 95054, US,A

KAPIL K. MATHUR
D. E. Shaw & Co., New York, NY 10036, US.A.

S . LENNART JOHNSSON
Division of Applied Sciences, Harvard Universiy, 33 Oxford Street, Cambridge, MA 02138, US.A.

AND

THOMAS J. R. HUGHES
Division of Applied Mechanics, Stanford Universiy, Durand Building, Stanford, CA 94305, US .A

SUMMARY

We examine the solution of a practical engineering problem on a parallel computer. The problem involves the
steady laminar viscous flow about an ONERA M6 wing and the computer is a 64-processing-node Connection
Machine CM-5E. We show that efficient domain decomposition procedures lead to a balanced load on the
processors and low communication times. The net result is that solutions can be attained in roughly 20 min
elapsed time for a 48,011-node, 266,566-element unstructured mesh. We conclude that this is sufficiently fast to
support the design process.

KEY WORDS: ONERA M6 wing; parallel computing; viscous flow

1. INTRODUCTION

Parallel computers are capable of significantly reducing computation time on problems of practical
engineering interest. One anticipates the reduction in time to be significant enough so that analysis of
complex models can be used in the early design process. This is presently not the case, as complex
analysis is usually reserved for very late in the design process. In order to bring to fruition the vision of
efficient parallel analysis of engineering problems, one needs to realize that computing in a parallel
environment involves a number of additional complexities when compared with computing in a
sequential environment. Paramount among these are domain decomposition, load balancing and
communication costs. Thus, unfortunately, parallel computing is simply more complex than sequential
computing. In this paper we consider a case study of the laminar viscous flow about an ONERA M6
wing calculated on a 64-processing-node CM-5E system, each processing node being composed of
four vector units. A vector unit will be referred to as a processor in the remainder of this paper. The
model consists of 48,011 nodes and 266,566 elements. We discuss and analyse the recursive spectral
bisection of the model in 256 subdomains and assess its impact on load balancing and communication
costs. Despite these additional complexities, we conclude that a very efficient procedure can be

CCC 0271-2091/95/100877-08
0 1995 by John Wiley & Sons, Ltd.

Received 16 March I995

878 Z. JOHAN ET AL.

developed enabling a solution to be attained in roughly 20 min elapsed time. This is sufficiently fast to
support the preliminary design phase.

2. PARALLEL IMPLEMENTATION ON THE CM-5E SYSTEM

Data distribution is a crucial issue when implementing finite element techniques on distributed
memory parallel computers. Communication between processors can become a bottle-neck if the finite
element data structures are not carefully mapped to the processors. In order to minimize this bottle-
neck, we have developed a set of data-mapping strategies and implemented them on the Connection
Machine CM-5E system. Special library communication routines taking advantage of data locality to
reduce data transfer between processors are used to perform the gather and scatter operations found in
finite element applications.

2. I . Data-mapping strategies

Both elements and nodes of an unstructured mesh are mapped onto the processors of the CM-5E

1. First the mesh is decomposed into element blocks made of adjacent elements and each block is

2. The mesh nodes are then mapped onto the processors using the mesh partitioning as a criterion

The objective of these mappings is to achieve as much locality between the nodes and the elements
as possible to minimize data transfer through the CM-5E data network. In order to achieve the best
computational load balance possible in the finite element programme itself, we constrain the
elements and the nodes to be uniformly distributed across the processors, i.e. all processors hold the
same number of elements (resp. nodes) except for the last one which gets whatever elements (resp.
nodes) remain. The implementation of both mapping strategies is done on the CM-5E system itself.

system. We have designed a two-step procedure which performs these mappings.

mapped onto a processor.

for choosing the placement of each node.

2.1.1. Mesh partitioning. The recursive spectral bisection (RSB) algorithm was chosen as the basis
of the data-mapping strategies described in this paper. The RSB algorithm was proposed by Pothen et
al. for reordering sparse matrices.' Simon then applied it to unstructured mesh partitioning.* The RSB
algorithm has since found wide acceptance in the scientific community because of the high-quality
partitionings it generates.

The RSB algorithm is based on a graph representation of the mesh topology. It is therefore
insensitive to regions of highly concentrated elements or to element distorsion. In our implementation
the graph is generated through the dual mesh connectivig, which identifies the elements sharing a face
with a given element. In this representation the mesh elements become the graph vertices and the
internal faces correspond to the graph edges. The mesh partitioning is performed using an iterative
process which decomposes the whole mesh into two partitions, each of which in turn is decomposed
into two partitions, and so on. The process ends when there are as many partitions as processors in the
CM-5E configuration considered. Each iteration of the process just described involves several
computational steps.

1. Possible disconnections in a partition are identified using a frontal algorithm.
2. The smallest non-zero eigenvalue and its associated eigenvector (also called the Fiedler vector)

VISCOUS FLOW AROUND AN ONERA M6 WING 879

of the Laplacian matix L, defined as

- 1 if elements i andj share a face,
0 otherwise,

are computed using the Lanczos algorithm. Each Lanczos step includes three dot-product
operations, one matix-vector product and an eigenanalysis of the tridiagonal matrix generated
by the Lanczos process.

3. After convergence of the Lanczos algorithm the components of the Fiedler vector are ranked and
this ranking is used to reorder the dual mesh connectivity.

4. The graph is then split in two and this process is repeated on each subgraph.

The RSB algorithm can be computationally intensive since a series of eigenvalue problems have to be
solved. In order to keep the partitioning time as small as possible, we have implemented the RSB
algorithm on the CM-5E system in a data-parallel fashion. In this implementation all elements of the
mesh are treated in parallel. It implies a two-level parallelization: one level on the partitions generated
at a given stage of the decomposition process and the other on the elements in each partition. Most of
the resulting code is written in the CM Fortran lang~age,~ except the eigenanalysis of the tridiagonal
matrix which is implemented in CDPEAC (a macro-a~sembler).~ Details of the implementation can be
found in Reference 5.

2.1.2. Node renumbering. Once the elements have been reordered to obtain element blocks, the
mesh nodes are renumbered using the following procedure.

1.
2.

3.

4.

5 .

Each element is assigned the element block number to which it belongs.
Each element sends the block number to the nodes it is associated with. Nodes receiving the
same block number from their neighbouring elements are marked as ‘interior nodes’ and their
location code is the block number received. The other nodes are marked as ‘boundary nodes’ and
they choose their location code at random from the block numbers they received.
Nodes are ranked based on their location code, with the constraint of having interior nodes
ranked before boundary nodes for the same location code.
Nodes are assigned to the processors based on their location code in the order obtained in step 3.
Since all nodes may not be assigned during this phase because of the load balance constraint
described at the beginning of Section 2.1, this strategy forces interior nodes to have a greater
probability than boundary nodes of being assigned to the same processor as the elements they are
associated with.
Nodes which have not been assigned during step 4 are’ distributed among the processors which
still have room left.

This procedure can be easily implemented in a data-parallel fashion, parallelization occurring over the
elements for steps 1 and 2 and over the nodes for steps 3-5.

2.2. Communication primitives

Gather and scatter communication primitives have been designed to take advantage of the data-
mapping strategies presented in the previous subsection, therefore reducing data transfer between

880 Z. JOHAN ETAL.

processors as much as possible. The gather operation (which transfers data from a node-based data
structure to an element-based data structure) is used to illustrate the proposed procedure.

1.

2.

This

The processor holding a given element partition knows which components of the node-based
data structure will be needed by the elements of that partition. These values are therefore gathered
and stored into a local buffer. One can note that this data transfer is either local (i.e. on processor)
if the node-renumbering algorithm has placed the node on the same processor as the partition, or
off-processor otherwise.
Elements in each partition then gather values from the local buffers in order to perform element-
based computations. This is a purely local data transfer.

two-step procedure has the advantage of eliminating all redundant data transfer that could
possibly happen between processors. For example, if two elements residing on the same processor need
to gather values from the node residing on another processor, these values are gathered only once
during the first step and are then 'spread' to the elements during the second step. The scatter operation
is implemented in a similar fashion, the elements first scattering values into local buffers which are in
turn scattered to the nodes.

This procedure and the node-renumbering scheme detailed in Section 2.1.2 are the key components
of high-bandwidth gatherhcatter primitives as shown in the following example.

2.3. Numerical example

This example is the computation of a steady viscous flow at Mach 0.5 and Reynolds number 500
(based on the chord length at the wing root) around an ONERA M6 wing placed at an angle of attack
of 0". The tetrahedral mesh, courtesy of Rainald Lohner (The George Washington University), is
composed of 48,011 nodes and 266,556 elements. The graph representation of the mesh has 527,966
edges. Figure 1 presents a view of the surface mesh on the outer boundaries of the domain. One can see
the high concentration of boundary elements on the plane of symmetry near the root of the wing. The
partitioning and fluid flow programmes were compiled with CMF 2.1 and were run in 64 bit arithmetic
on a 64-processing-node CM-5E system equipped with 256 vector units. This system was running the
Connection Machine operating system CMOST 7.3. All reported timings correspond to CM elapsed
times.

Figure 1 . M6 wing: view of surface mesh on outer boundaries

VISCOUS FLOW AROUND AN ONERA M6 WING 88 1

Figure 2. M6 wing: decomposition into 16 subdomains

2.3.1. Mesh decomposition. A decomposition of the mesh into 16 subdomains is depicted in Figure
2. Note that 256 subdomains are actually needed for the CM-5E configuration considered (one
subdomain per vector unit). Figure 3 shows the cost of the parallel RSB algorithm as the bisection
procedure progresses. The sub-O(log2 (no. of partitions)) cost is due to the combined effects of the
two-level parallelization of the algorithm (see Section 2.1.1) and the decrease in the number of
Lanczos iterations as the bisection procedure progresses.

The total cost of partitioning the mesh into 256 subdomains is 61 s. At this level of partitioning
there are 57,003 cuts in the graph, representing 10.8 per cent of the total number of graph edges. Table
I gives the computing costs of the various parts of the RSB algorithm. The computation of the Fiedler
vector using the Lanczos algorithm dominates with almost 80 per cent of the total time. A more
detailed cost analysis of the Lanczos algorithm is presented in Table 11. One can deduce from these two
tables that about 75 per cent of the total time is spent in communication between processors (the
communication-dominated portions of the code are the identification of connected blocks, matrix-
vector products, and data ranking and reordering). None the less, the parallel RSB algorithm exhibits
good performance on the CM- 5E system.

Figure 3. M6

.f 30

.= 20

10

ti a

1

0 2 4 6 8
log2(no. of pnrtitions)

wing: partitioning cost as a function of recursive bisection on 64-node CM-5E system

882 2. JOHAN ET AL.

Table I. M6 wing: elapsed times for various parts of RSB
algorithm for partitioning into 256 subdomains on 64-node CM-5E
system

Time (s) Percentage

Identification of connected blocks 9.3 15.2
Computation of Fiedler vector 47.4 77.6
Data rankingheordering 2.3 3.8
Miscellaneous 2.1 3.4
Total 61.1 100.0

Table 11. M6 wing: cost analysis for computation of Fiedler vector

Time (s) Percentage

Matrix-vector products 31.7 66.9
Dot-products 5.5 11.6
Eigenvalue analyses 3.0 6.3
SAXPYs and miscellaneous 7.2 15.2
Total 47.4 100.0

2.3.2. Fluid JEow computation. The steady state computation was converged to engineering
accuracy (three orders of magnitude in residual reduction) in 500 time steps at CFL number 2. A one-
point integration rule was used on each element. Views of the wing surface mesh and pressure contours
on the wing are shown in Figures 4 and 5 respectively. Timings for the computation and
communication (i.e. gather and scatter) parts of the programme are given in Table 111. In this example
the computation part achieves 36.8 Mflops/s/pn. The gather and scatter operations yield bandwidths of
20.5 and 20.3 MbytesMpn respectively. The overall performance of the solver is 1.9 Gflops/s, which is
about 20 per cent of the peak hardware performance. The convergences of the drag force FD and side
force Fs as a function of the time step number are presented in Figures 6 and 7 respectively. One can
see that convergence (as far as the aerodynamicist is concerned) is actually achieved after about 350
time steps. This viscous computation could therefore have been done in less than 20 min.

Figure 4. M6 wing: view of mesh on wing surface

VISCOUS FLOW AROUND AN ONERA M6 WING

Table 111. M6 wing: CM elapsed times for
various parts of finite element programme run
on 64-node CM-SE system

Time (s)

Gather operations
Computations
Scatter operations
Total

83
1104

147
1334'

* 22 min, 14 s.

Figure 5. M6 wing: pressure contours on wing surface

20

18

16

14

12

10

8

G

4

E-3 ' 1 , , , , , , , , , 1
0
0 100 200 300 400 500

Time-step number

Figure 6. M6 wing: convergence of drag force

-88 c J
E3-8G/. , , , , , I , 1
L

0 1M) MO 300 400 500

'rime-step number

Figure 7. M6 wing: convergence of side force

883

884 2. JOHAN ET AL.

3. CONCLUSIONS

Practical solution of engineering problems on parallel computers involves consideration of aspects not
present in sequential computing. For example, one needs to address issues of domain decomposition,
load balancing and communication costs in addition to efficiently programmed algorithms. As a
practical example of these issues we have considered the solution of a laminar viscous flow about an
ONERA M6 wing on a 64-processing-node CM-5E system. We have shown that a parallel
implementation of the recursive spectral bisection algorithm leads to a very efficient domain
decomposition of high quality. This in turn leads to very low communication costs. Thus a steady
viscous flow of a model comprised of 48,011 nodes and 266,566 elements can be obtained on a 64-
processing-node CM-5E system in roughly 20 min elapsed time. This is sufficiently fast to support the
engineering design process.

REFERENCES

1 . A. Pothen, H. D. Simon and K.-P. Liou, ‘Partitioning sparse matrices with eigenvectors of graphs’, SIAM 1 Mahix Anal.

2. H. D. Simon, ‘Partitioning of unstructured problems for parallel processing’, Comput. Syst. Eng., 2, 135-148 (1991).
3. CM Fortran Language Reference Manual, Version 2. I , Thinking Machines Corporation, Cambridge, MA, 1994.
4. W Programmer b Handbook, CMOST 7.2, Thinking Machines Corporation, Cambridge, MA, 1993.
5 . 2. Johan, K. K. Mathur, S. L. Johnsson and T. J. R. Hughes, ‘An efficient communication strategy for finite element methods

Appl., 11, 4 3 W 5 2 (1990).

on the Connection Machine CM-5E system’, Comput. Methods Appl. Mech. Eng., 113, 363-387 (1994).

